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ABSTRACT

Comparisons are shown between predictions and exper-
imental data for blade and endwall heat transfer. The com-

parisons are given for both vane and rotor geometries over
an extensive range of Reynolds and Mach numbers. Com-

parisons are made with experimental data from a variety of
sources. A number of turbulence models are available for pre-

dicting blade surface heat transfer, as well as aerodynamic

performance. The results of an investigation to determine
the turbulence model which gives the best agreement with

experimental data over a wide range of test conditions are

presented.

Nomenclature

c - True chord

c_ - Axial chord

ev - Specific heat
d Distance from surface

h Span
Ec Eckert number, W_/%/[(T_ -T_)[

M2 Isentropic exit relative Mach No.
Nu Nusselt No. based on true chord and k(T_)

p Pressure
Pr Prandit No.

Prt Turbulent Prandlt No.

Re2 Reynolds No. based on true chord and M2

Sc - Schmidt number

St - Stanton number

Stm - Mass transfer Stanton number

s - Surface distance

T - Temperature

Tu Turbulence intensity

W Relative velocity

y+ Normalized distance of first grid line from blade
6 Inlet boundary layer thickness

/zt Turbulent eddy viscosity

p Density'

Subscripts

EXIT Exit of computational domain

I Full
i - Gas total condition
g

- Surface
I/3

t - inlet

- outlet

INTRODUCTION

A relatively large number of three-dimensional Navier-

Stokes analyses for turbine blade row heat transfer have been
reported in the literature. Each of the reported results have

shown comparisons with at most a few experimental cases. In
order to validate an approach to predicting turbine blade row

heat transfer, it is desirable to show comparisons with experi-
mental data for an extended range of test conditions. Among

the earliest heat transfer predictions using steady state three-

dimensional analyses were those of ttah(1989) and Choi and

Knight(1988). They showed comparisons with the experi-
mental data of Graziani et al.(1980). The experimental data

were for a large scale rotor geometry tested in a linear cas-
cade at low Mach number. The tests were conducted with

a uniform heat flux boundary condition which resulted in

an average T_/T_ of approximately 1.08. Chima et a1.(1993)
showed comparisons ofendwall heat transfer predictions with

the experimental data of Boyle and Rnssell(1990). Again,

the experimental data were for a large scale, relatively low
speed linear cascade, with low turbulence intensity and a

T_/T_ = 1.07. Data have been obtained on a large scale
rotating turbine rotor by Blair(1994). These data were for a
variety of Reynolds numbers and incidence angles. In these
tests the Mach numbers were relatively low, and the average

Tw/T_ = 1.1. Data for stator vanes at transonic Mach num-
bers and wall-to-gas temperature ratios typical of gas turbine

applications have been measured by a number of researchers.

York et a1.(1984) obtained data in a linear cascade for a



Table I. - Description of cases used in analysis

Vanes

Source of data Re2cX10 -_ MEXIT

York et a1.(1984)

Arts and Heider(1994)

Boyle and RusseU(1990)

Harasagama and Wedlake(1990)

2.1-18.0

22.5

3.4-20

17-52

T:/r,
0.3-1.1 0.75

0.92-1.15 0.73

0.1-0.7 1.1
0.94-1.29 0.66

Cascade Test approach

Linear

Annular

Linear
Annular

Steady state
Shock tube

Liquid Crystals
Shock tube

Rotors
Source of data

Bldr(1994)

Goldstein and Spores(1988)

Chen and Goldstein(1992)

Graziani et a1.(1980)

Giel et al.(1996)

Re2cXl0 -_

2.7-7.1

1.4-2.3

1.2-2.0

10.7

13-26

Mp.xrr
0.06-0.15

0.03-0.04

0.02-0.03

0.I

1.0-1.3

T:/T 
1.1

1
1

1.1

1.1

Cascade Test approach

Rotating
Linear

Linear
Linear

Linear

Steady state

Napthalene

Napthalene

Steady state

Steady state

Table II. - Characteristics of experimental data

Source of data Tu%

York et al.(1984)
Arts and Heider(1994)

Boyle and Russell(1990)

Harasagama and Wedlake(1990)

Vanes

Heat Transfer
Endwall Blade

7.0 Y N
4.5 Y Y

1.0 Y N

6.5 Y Y

(T,_)IlT_ Ec No. of
Cases

1.0 1.56 4

0.73 1.56 1

1.0 1.51 2

0.66 1.47 5

Source of data

Blair(1994)
Ooldstein and Spores(1988)

Chen and Goldstein(1992)

Graziani et al.(1980)

Giel et al.(1995)

Tu%

High
1.2

1.2

1

0.3-7

Rotors

Heat Transfer

EndwaU Blade

Y Y

Y N
N Y

Y Y

Y N

(T,,,)ilT_ Ec No. of
Cases

1.0 0.15 3

1.0 N.A. 3

1.0 N.A. 1

1.0 0.18 2

1.0 5.3-8 4

stator vane configuration. Harasagama and Wedlake(1991),
Chana(1992), and Arts and Heider(1994) presented stator
vane heat transfer obtained in shock tube facilities for an-

nulax cascades. Predictions using three-dimensional Navier-

Stokes analyses were obtained by Heider and Arts(1994) for

the data of Arts and Heider(1994), and by Boyle and Jack-

son(1995) for the data of Chana(1994).

In general most predictions presented in the literature

showed comparisons with a limited number of experimental
cases. The data available in the literature cover a wide vari-

ety of test conditions. In addition to a range of geometries,

Reynolds and Mach numbers, there are significant differences

in turbulence intensity, inlet boundary layer thicknesses, as

well as inlet blade row temperature profile among the exper-
imental data.

The work reported herein consists of comparisons of pre-

dicted blade row heat transfer with experimental data for a

variety of test configurations The purpo_ of examining a

varietyoftestconfigurations is to increaseconfidence in the

abilityofboth the analysisand turbulencemodel to predict

blade row heat transfer.The analysiswas done using the
steady statethree-dimensionalNavier-Stokescode described

by Chima(1991), and by Chima and Yokota(1988). Results

were obtained using algebraicturbulencemodels.

EXPERIMENTAL DATA USED FOR

VERIFICATION

Table I gives a descriptionof the experimental data

sources with which the computational results are compared.

There are four stator and four rotor geometries. The data of

Goldstein and Spores(1988) are for the same rotor geometry

as Chen and Goldstein(1992). The maximum Mach number

for each of the stator tests is in the transonic flow regime,

but only the rotor t_st data of Giel et a1.(1996) is in the tran-

sonic region. Except for the data of Graziani eL a1.(1980), the



Table III. - Characteristics of cases examined

Source of data cffi,(cm)

York et al.(1984) 5.25

Arts and Heider(1994) 4.21

Boyle and Rnsseli(1990) 13.8

3.96Harasagama and
Wedlake(1990)

Vanes

cUc= h/c= 61/c ,
1.775 1.45 0.12

0.12

0.12

0.12

1.836 1.19 0.0012

1.393 1.104 0.184
0.184

1.881 1.26 0.093

Re2XIO -5 Rel/Re2
2.1 0.36

6.2 0.32

18.0 0.32

18.0 0.30

22.5 0.25

0.35

0.35

3.4

20.0

34.0

34.0

34.0
17.0

52.0

0.25

0.24

0.23

0.24

0.24

0.951

0.721

0.721

0.468

0.440

0.996

0.836

0.566

0.445
0.366

0.445

0.445

'
2.8e-05 1.0

2.2e-05 1.0

8.0e-06 1.0

7.4e-06 1.0

1.0e-05 0.73

0.9e-04 1.0

1.8e-05 1.0

5.6e-06 0.659

5.0e-06 0.659

4.7e-06 0.659

9.4e-06 0.659

3.4e-06 0.659

Source of data c_,(cm)

s1 (1994) 16.1

Goldstein and 14.53

Spores(1988)

Chen and Goldstein(1992) 14.53

Graziani et hi.(1980) 28.13

Giel et a1.(1996) 12.7

Rotors

cUc: h/c: 6s/c:
1.22 0.946 0.05

0.05
0.05

1.1641 2.065 0.10
0.20

0.08

1.1641 2.065 0.18

1.22 0.99 0.014

0.117

1.45 1.20 0.24

0.27
0.15

0.24

Re2XlO -_ R,ellR, e2

2.7 0.59

2.7 0.78
7.1 0.78

2.3 0.61
2.3 0.61

1.4 0.61

2.0 0.61

10.8 0.63

10.8 0.63

26. 0.53

13. 0.53

26. 0.53

26. 0.53

PEXIT

0.997

0.997

0.980

0.998

0.998

0.999

0.998

0.985

0.985

0.361

0.361

0.361

0.528

(T.)I/T;
1.0e-04 1.0

1.0e-04 1.0

1.0e-04 1.0

1.0e-04 1

1.0e-04 1

1.5e-04 1

l.Oe-04 1

3.0e-05 1.0

3.0e-05 1.0

7.4e-06 1.00

1.4e-05 1.00

7.4e-06 1.00

8.9e-06 1.00

low Much numbers are associated with low Reynolds num-

bers. Except for the data of Boyle and Russell(1990), the

stator data are all for Tw/T_ values representative of actual

engine applications. The data for rotor geometries are allfor

Tw/T_ close to unity. Data obtained using liquid crystals or
Napthalene permit near continuous measurement of the sur-

face heat transfer. Blair(1994) obtained data in a rotating

large scale facility for a range of incidences.

Table II gives characteristics of the various data sources.
The data of Boyle and Russell(1990) were for a low turbu-

lence intensity, while the other stator data were for moderate

to high levels of turbulence. All cases had endwall data, and

Arts and Heider(1994) and Harasagama and Wedlake(1990)
showed vane heat transfer data. High turbulence levels were

present in Blair's test and for some of the tests of Giel et hi.
The other rotor data had low turbulence levels.

Table II also lists the Eckert,Ec, numbers for each data

source. The values shown are for the maximum blade row

exit velocity for each data set. The Ec nunlber indicates the

importance of viscous dissipation in determining the near

wall temperature profile. All of the stator test cases have

maximum Ec numbers greater than one, while only the rotor

cases of Giel et hi. had Ec values greater than 0.2. Because

the cases with wall-to-gas temperature ratios representative

of actual engine conditions .also have high exit Much num-

bers, these cases also have relatively high Eckert numbers.

Table III shows geometric, flow, and thermal character-
istics of the various cases examined. The inlet and exit

Reynolds numbers are shown for each test case. Both

Reynolds numbers are given to facilitate comparisons among

different investigators. Some experimental heat transfer re-

sults were given using inlet conditions, while others used exit
conditions. Those cases where the inlet wall temperature

ratio,(Tw)t/T_, is given as unity' have unheated,(or uncooled
in the case of York et hi.), starting lengths. This table also

shows the near wall spacing used in the computational anal-

ysis. This is the spacing of the first grid line from either
the blade or endwall surface. This spacing, yl/c_, was de-

termined from a flat plate correlatio0 so a.s 4o give a y+ of

approximately one.



DESCRIPTION OF COMPUTATIONAL
ANALYSIS

Steady state heat transfer predictions were made using

the three-dimensional Navier-Stokes computer code RVC3D.
This code is a finite difference analysis, and was described

by Chiton(1991), and by Chima and Yokota(1988). The

analysis used a Ruage-Kutta time marching approach. Im-

plicit residual smoothing is used to improve convergence.
Three algebraic turbulence models are available for use in

the code. These models can be viewed as variations of the

commonly used Baldwin-Lomax(1978) algebraic turbulence

model. Cares were run using each of the three turbulence
models. Results are presented herein for the turbulence

model which gave the best agreement with experimental data

overall. The model chosen is the one described by Chiton et
al.(1993). Predictions using an alternative turbulence model
are given for selected cases.

Since many of these test cases, and actual engine op-
eration, were at relatively high turbulence levels, the transi-

tion criteria of Mayle(1991) was incorporated into the turbu-
lence model. The Baldwin-Lomax transition criteria does not

account for freestream turbulence effects. High freestrearn

turbulence results in leading edge Frossling numbers sig-
nificantly greater than unity. To account for the effect of

freestream turbulence on laminar heat transfer, the model of

Smith and Kuethe(1966) was incorporated into the calcula-
tion of turbulent viscosity.

Researchers showed good agreement between predicted

and measured turbine blade heat transfer using both alge-
braic and two-equation turbulence models. For example,

the experimental cascade data of Graziani et a1.(1980) have

been used for a number of different heat transfer predictions.
Hah(1989), and Choi and Knight(1988) used two-equations
turbulence models to predict the blade and endwall heat

transfer. Ameri and Arnone(1994) analyzed this case using
both two-equation and algebraic turbulence models. All of

the predictions agree reasonably well with the experimental

data. The aforementioned experimental case, along with sev-
eral other available in the literature, is for low Much number

flow. It remains to be seen if algebraic models are as ef-

fective as two equation models in predicting turbine blade
heat transfer for high Mach and Reynolds number cases. As

shown by Ameri and Arnone(1994), heat transfer predic-

tions using two-equation models required nearly twice the

CPU time to converge, compared with an algebraic model

solution. Results are presented herein for high Reynolds

number cases, which require a moderate to large number of
grid points. Since two equation turbulence models have not

demonstrated a significant superiority over algebraic models

for turbine blade heat transfer predictions, and CPU time is
a significant consideration, algebraic turbulence models were

used. Both Pr and Pr_ were held constant at 0.70 and 0.90

respectively.

A uniform temperature boundary condition was imposed
on all solid boundaries. Spanwise radial equilibrium was as-

sumed at the exit boundary. At each spanwise location the

exit static pressure was allowed to vary in the circumfer-

ential direction. The average hub exit static pressure was

specified, but the pitchwise variation was determined from

the internal flow field. Uniform total conditions were speci-
fied for the inlet core flow, and uniform static pressures were

specified through the boundary layers. The inlet boundary
layer temperature and velocity profiles were determined us-

ing fiat plate correlations in which the friction factor and

Stanton number are determined by the specified inlet bound-

ary layer thickness. The correlations are those given by Kays
and Crawford(1980). Using a simple power law for the inlet

temperature profile produces an erroneous result, since the

power law gives an infinite gradient at the wall.

A large number of cases were examined, placing a pre-
mium on obtaing solutions with a minimum of CPU time.

Therefore, moderate size grids were used. A typical grid size

was 185 x 49 x 65, and was chosen based on previous work,

(Boyle and Giel(1992)). Even though midspan symmetry

was assumed for the linear geometry test cases, 65 spanwise
grid lines were used to maintain a desirable stretching ra-

tio for the high Reynolds number test cases. C-type grids

were generated using the procedure described by Arnone
et. a1.(1992). In this procedure grid lines near the surfaces

are embedded within a coarse grid, which is generated using
Sorenson's(1980) technique. It was found necessary to main-

tain grid stretching ratios less than 1.3 in addition to having
a y+ near unity to obtain grid independent results.

The primary convergence criteria was that the surface
heat transfer remained constant as the solution advanced in

time. It was observed that the ratio ofinlet to exit mass flow

varied greatly during the first five hundred or so iterations.

In addition to the stability in the surface heat transfer, cases

were run until there was only a small variation between the

inlet and exit mass flow. When these criteria were met, it

was found that the residuals had decreased by three or more

orders of magnitude. The analysis was run on a Cray C90

machine. The CPU time for convergence was between one

and three hours, with the low Much number cases requiring
the most time. The low Much number cases were run with

a minimum P_/P_ of 0.985 and the experimental Reynolds

number to improve convergence speed. A test case with a

higher pressure ratio, and the same Reynolds number took

significantly longer to converge to the same result. The com-

puter code was vectorized by the developer, Chiton(1991).

Consequently, the average CPU time per grid point to ad-

vance the solution one time cycle was 6 x 10 -6 seconds.

DISCUSSION of RESULTS

Table II shows that 25 cases were examined. Only se-

lected cases will be compared graphically, all,hough the pre-
dictions for all ca.sc_ will be discussed.



Vanes

Comparison with data of York et al.(1984) The data of

York et a1.(1984) were for a range of test conditions, but
results were presented for only a single representative case.

The report by ttyltoa et a1.(1981) contained the data for
the test matrix. Heat traalsfer coefficients were presented in

terms of Stanton number based on local conditions. Figure

1 shows comparisons between the predicted and measured
Stanton numbers for the M2 = 0.27 and Re2 = 2.1 x l0 s

case, and the M2 = 1.1, and Re2 = 18. x l0 s case. The
Stanton number based on inlet conditions is also given for

the higher Math number case. It is included to facilitate

comparisons with data from other sources. In this plot a

percentage variation in Stanton number represents the same

percentage variation in heat transfer coefficient.
The predictions, and to some extent the experimental

data, show very high values close to the leading edge of the

pressure surface. This is a result of the Stanton number def-

inition used. These high Stanton numbers do not represent

regions of high heat transfer coefficients, since this is a low

velocity region. With this definition, when the velocity de-
creases, the Stanton number increases, even when the heat
transfer coefficient is constant. The average predicted Stun-

ton number agrees well with the average experimental Stan-
ton number. Comparing the Stanton number based on local

velocity predictions with experimental values shows some dif-
ferences in the endwall heat transfer patterns. Part of the

differences in heat transfer patterns could be due to differ-

ences in the choice of AT used to determine the Stanton

number. In the predictions the endwall pressure distribution
was used to determine the local velocity for the Stanton num-

ber, as well as the adiabatic wall temperature. The reference

AT in the experimental Stanton number was based on an

experimentally determined adiabatic wall temperature. The

experimental adiabatic wall temperatures were considerably
lower than adiabatic wall temperatures calculated assuming

a recovery factor of Pr °a3a. Using the experimentl adiabatic

wall temperature to determine the predicted Stanton num-

bers, increases the values by up to 30%.

The third plot for the higher Math number case shows
Stanton number based on inlet velocity, tIere the heat trans-

fer coefficient and Stanton number are proportional. The

maximum heat transfer occurs in the midpassage upstream

of the throat. In the unguided portion of the passage there is

a decrease in heat transfer across the passage in moving from

the pressure side to the suction surface. This same pattern

was observed by Georgiou et a1.(1979) in tests of a stator

vane, conducted in a shock tube facility.

Upstream of the vane the predictions show a noticeable

degree of pitchwise nonuniformity. This is partially due to
the interaction of _he unheated star_ing length boundary con-

dition with a C-type grid. C_type grids have nonuniform

spacing near the mid-pitch line at the inlet, which results in

pitchwise no_,-uniform Stanton nun,bet contours near the

Fig. la - Comparison of endwall Stanton No. Data of York

et al., Re2 = 2.1 x 105, M2 = 0.27

endwall temperature discontinuity. However, as will be

shown subsequently, C-type grids have an advantage in pre-

dicting the Stanton number in the leading edge region for
the endwall and blade. Also, the Stanton number nonuni-

fortuity occurs only when there is a step change in endwall

temperatures near the inlet. Calculations in which the lo-
cation of the start of endwall cooling was varied, or with

different grid spacing in the region on the temperature dis-

continuity, showed virtually identical heat transfer within the

blade passage.
Although not shown in the figure, comparisons for two

M2 = 0.70 cases at different Reynolds numbers were very

similar to the comparisons for the M= = 1.1 case shown.

Considering the results for all cases, the degree of agreement
between the analysis and the data is reasonably good.
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Fig. 2a - Comparison of endwaU Stanton No. Data of Boyle
and Russell, Rez = 3.4 x l0 s

Data of Boyle and Russell. In these tests the Reynolds

number was varied by varying the speed of the air through
the cascade. Consequently, there was no independent varia-

tion of Reynolds and Mach numbers. In addition to varying
the Reynolds number, the effects of variation of inlet bound-

ary layer thickness were also presented by Boyle and Russell.
The effects of variation in inlet boundary layer thickness were

small. Comparisons are shown in figure 2 for a single inlet

boundary layer thickness at the highest and lowest Reynolds

numbers tested. Parts a and b of figure 2 compare predicted
and measured Stanton numbers based on inlet conditions for

two Reynolds numbers.

Within the passage the analysis overpredicts the Stan-

ton number to a considerable extent. The region within the

passage which shows the greatest disagreement is near the

throat. For the low Reynolds number case the predictions

show only a very small region near the pressure side of the

throat with a Stanton number of 11.1 x 10 -3. But, the pre-

dictions show a peak level in excess of 15 × 10 -3 in the same

region. Close to the leading edge region the analysis is better

agreement with the data. The liquid crystal measurements

show a series of heat transfer contours in front of the leading
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Fig. 2b - Comparison of endwa_ Stanton No. Data of Boyle
and Russell, R_2 = 20 x 105

edge. The heat transfer rates increase substantially in ap-
proaching the leading edge. Boyle and Russell showed lead-

ing edge augmentation approaching a factor of three at 0.2x

the leading edge diameter in front of the leading edge. The

predictions show a series of nearly concentric contours, which
agree well with the measurements in terms of location and

level of augmentation.

For the high Reynolds number case the analysis over-

predicts the heat transfer in the throat region. As will be

shown, a significant amount of overprediction w_s due to the
choice of turbulence model. To insure that the discrepancy

in the heat transfer prediction was due to the choice of turbu-

lence model, other factors were examined computationally.

The vane was neither heated nor cooled, and the endwall was

subjected to a nearly constant heat flux. There was no signif-
icant difference in the calculated endwall heat transfer when

the vane was unheated compared to when it was maintained

at the endwall temperature. There was also no significant

variation in endwall Stanton number when the endwall was

subject to a uniform heat flux boundary condition.
Data of Arts and Fielder. Figure 3 shows a comparison

of the predicted and measured heat transfer data of Arts

and Heider(1994). These data were obtained in a shock tube
so that uncertainties due to a step change in the endwall

thermal boundary condition do not arise. The data are for

Fig. 3a- Comparison of hub Nnsselt No.
Heider.

1.7

Data of Arts and

a stator at transonic exit conditions. The data were given as

heat transfer coefficients, and have been normalized by the
true chord and inlet conductivity to yield Nusselt numbers.

There is good agreement between the predicted and mea-
sured Nnsselt numbers for both the hub and casing surfaces.

In the experiment vane surface heat transfer measure-
ments were made at 6%, 50%, and 94% of span. Figure 3c

compares the measured and predicted heat transfer for the

vane. For the pressure surface the measurements and predic-

tions show little spanwise variation in heat transfer, though

the analysis is somewhat greater than the data. Because of

the high Reynolds number and moderate turbulence inten-

sity, the predictions for the pressure surface gave transition

close to the leading edge. The degree of agreement was sig-

nificantly affected by the choice of transition length model.
In the transition model the local turbulence intensity was ad-

justed based on the local freestream velocity. The analysis

predicts the heat transfer well close to the endwall. At the

midspan after transition, in what is essentially the uncovered

portion of the vane, the analysis overpredicts the suction sur-
face heat transfer. IL will be shown that this overprediction

is largely do to the choice of turbulence model.
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Fig. 3c Vane surface Nusselt No. Data of Arts and Heider.

Data of Harasa_ama and Wedlake. Figure 4 compares
hub and vane heat transfer results for two different Reynolds
numbers. This case is for a M2 = 1.14. Vane heat transfer

is mainly affected by variations in Reynolds number.

The Nusselt number varies with Reynolds number, but

the degree of agreement between the prediction and mea-

surement remains about the same. The analysis predicts a

small, higher than measured, heat transfer region close to the

pressure surface. Also, near the suction surface the analysis

predicts a region of too low heat transfer aft of the throat re-
gion. The analysis overpredicts suction surface heat transfer

in the transition region, and is slightly higher for the un-
covered portion of the vane. While the variation in Nuseelt

number is not large, both the prediction and measurements
show a lower heat transfer close to the suction surface down-
stream of the throat as the Much number increases.

The degree of agreement between the analysis and the
data for the casing heat transfer was about the same as for

the hub. VariationsinexitMuch number did not significantly

affectthe degree of agreement with the experimental data.

The degree of agreement for the vane surfaceheat transfer

was alsonot affectedby variationsin Mach number.

Rotors

Data of Graziani et al. Figure 5 compares the predic-
tions with the measurements of Grazianl et al. for the thin

inlet boundary layer thicknesses. The measurements for the

rotor surface show a slightly larger spanwise region of two-
dimensional heat transfer distribution for the thinner bound-

ary layer. In general the analysis overpredicts the heat trans-
fer on both the rotor blade and endwall. On the rotor the

analysis overpredicts the heat transfer on the rear portion of

the pressure surface. This is a consequence of the transition

model used. The model gave a good prediction for the suc-
tion surface transition location for the vane data of Arts and

Fielder. However, for this rotor case, the model predicted

transition close to the leading edge. An adverse pre_ure

gradiem, close to the leading edge resulted in a calculated

Res sufficient to trigger transition in the turbulence model.
Evidently, pressure surface transition did not occur in the

experiment. On the suction surface the Stanton number is

too high at transition, but otherwise the analysis predicts

the heat transfer distribution reasonably well. The analysis

severely overpredicts the endwall heat transfer. The largest

overprediction occurs near the throat region. The effects of
using a different turbulence model will be examined subse-

quently forthiscase.

Neither the measurements nor the predictionsshowed

a large effect of varying the inlet boundary layer thickness
on either the rol,or blade or the endwall heat transfer. Both

showed a slight decrease in peak passage heat, transfer for
the thicker inlet, boundary layer.
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Data of Goldstein and Spores. Figure 6a compares the

predicted and measured endwail heat transfer for the higher
Reynolds number-thin inlet boundary layer case of Goldstein

and Spores. The data of Goldstein and Spores were normal-

ized so that at an z/c,: = 0.2 upstr,_.am of the leading edge

10

the normalized value was unity. Part of the normalization

accounted for the unheated starting length. This factor was

1.24 at the point where the normalized value was unity and
decreased to 1.14 at the rotor trailing edge. Predictions were

normalized in the same manner. In addition to the compar-
ison of experimental Stanton numbers, the Stanton number

based on inlet conditions is shown. The nature of the naptha-
lene measurement technique allows for very detailed localized

measurements. Both the measurements and predictions show

very high heat transfer in front of the leading edge, with a

peak ratio in excess of 3.25. The data show the peak pas-

sage heat transfer to occur near midpassage, and somewhat

upstream ofthe throat region. The analysis tends to overpre-
dict the heat transfer in the throat region, but does show the

correct location of the peak passage heat transfer. Compar-

ing the two calculations shows that normalizing the Stanton

number to account for the starting length has only a small
effect on the shape of the endwall heat transfer distribution

The normalized comparison does not verify the absolute

level of the predicted heat transfer. Goldstein and Spores
gave the mass transfer Stanton number,St,,,, as 1.472 x 10 -3,

where the normalized value was unity. Heat transfer predic-

tions were converted to mass transfer values using the rela-

tionship St = St,_(Pr/Sc) "-1. Chen and Goldstein(1992)
stated that 2.0 < Sc < 2.5, and chose n = 0.33. Assuming
Sc = 2.0 yields heat transfer Stanton numbers almost ex-

actly twice the mass transfer Stanton numbers. This ratio

gives a heat transfer Stanton numbers of 0.0029, where the

St,, was 1.472 × 10 -3 . The predicted Stanton number at the
location where the experimental Stanton number ratio was

unity was 0.003. This indicates good agreement between the
analysis and the experimental data in terms of the Stanton

number level in the leading edge region.

There were only small differences in the experimental
data among the three cases. The agreement between the

predictions and the data was better for the high Reynolds

number cases. Allowing the near wall damping coefficient,
A +, to be a function of the pressure gradient did not improve
the agreement with the data.

Figure 6b shows comparisons for the rotor heat transfer

measured by Chen and Goldstein(1992). The experimental

data were presented in terms of St,,, values. The predicted

St values were divided by 2 for comparison purposes. There

is a two-dimensional region away from the endwa[l, and a

three-dimensional region associated with the passage vortex.

The experimental suction surface data show a line separating
a high heat transfer region close to the endwall from the low

Stanton number region towards midspan. The predictions

show the same separation into two regions, but the demar-

cation line does not advance up the span as rapidly, and the

peak value near the endwall is lower. Also, the predicLions

agree with the measurements in the leading edge region. In

the measurernenLs there is a high heat transfer region t(_
ward_ the, trailing edge, but tl, e predictions show low valu,_

in this region. Increasing the Tu level in the analysis m(,v_d

transition forward, and gave high hea_ transfi._r in this r_'gi(,n.
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2 " good agreement with the data in the endwall leading edgeregion. The peak value predicted in the passage is somewhat

• greater than the experimental value, and agrees best for the

4. high Reynolds number case. Although not shown in the mea-
surements there is a peak predicted heat transfer level in the

wake as great as the peak passage value.

l The predicted rotor midspan heat transfer on the rear

portion of the suction surface agrees well with the data. A
Tu of 10% was used in the analysis, and resulted in transition

6. closer to the leading edge than is evidenced by the data. The

data show high heat transfer levels on the suction surface

I near the hub, and close to the tip, where the heat transfer isaffected by the clearance flows. The analysis predicts these

,-_.__._i_ 6.__ high heat transfer rates. In terms of the rotor hub region

._ heat transfer, these results agree better with the data than
do the predictions for the data of Chen and Goldstein(1992).

Fig. 6a- Stanton No. comparisons. Data of Goldstein and The heat transfer predictions for the pressure surface are

Spores, Re2 = 2.3 × 105, thin inlet boundary layer, higher than the data. This is due to an early prediction for

the start of transition.
Data of Blair. Figure 7 compares predicted and measured Variations in the inlet flow angle did not affect the degree

Stanton numbers for heat transfer to the hub and blade sur-
of agreement between the analysis and the data.

face for two Reynolds numbers. The Stanton numbers are Data of Giel et al. Figure 8 compares predicted and men-
based on the rotor exit relative conditions. Even though the sured Stanton numbers for two Reynolds numbers. The cases
Reynolds number varied by a factor of three, the measured are for an :1¢2 = 1.3, and a low Tu. Predicted Stanton num-
Stanton numbers are only slightly lower. The predictions are bers are calculated in the same manner as the experimental
only moderately lower. The expected change is not to large

since assuming St _: Rc -°2 gives only a 25% decrease in
heat transfer for a factor of three increase hi Re. There is 11
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data, and is based on the calculated adiabatic wall temper-
ature. In common with most of the previous comparisons,

the agreement in the leading edge region is good. Within the

passage the analysis shows a somewhat higher heat transfer
level, but the correct trend in the distribution. The analy-

sis, and especially the low Reynolds number data show what

appears to be the effect of a separation line going from the

pressure side leading edge region to midchord on the suc-
tion surface. In the data high heat transfer levels are seen

upstream of this line, while the prediction show high levels
immediately downstream of this line. Unlike several of the

previous comparisons, the analysis fails to show very high
heat transfer rates just downstream of the trailing edge. This

may have been caused by insufficient grid resolution in this

region.
Comparisons were made with the data of Giel et al.

for cases in which the inlet boundary layer thickness was re-

duced, and in which the exit Mach number was reduced to
1.0. The reduced inlet boundary layer thickness resulted in

reduced secondary flows. The measured endwall heat trans-

fer near the pressure surface just upstream of the throat was
lowered when there was a thinner inlet boundary layer. The

analysis showed the same behavior. Reducing the exit Ma_h

number gave slightly higher heat transfer downstream of the
throat. This effect was also seen in the predictions.

Turbulence model effects

All of the comparisons shown so far have been for the tur-
bulence model described by Chima et al.(1993). The com-

parisons that were given showed the predicted heat trans-

fer was generally higher than the measurements. For corn-

parisons where Tw/T_ was characteristic of engine operat-
ing conditions, the degree of overprediction was small. For

comparisons where T_,/T_ was small, and the Mach number
was low, the degree of overprediction was high. The pri-

mary cause of these results is the choice of turbulence model.

Results presented in this section illustrate the effects of an

alternative algebraic turbulence model on heat transfer pre-
dictions. These comparisons illustrate the sensitivity of the

heat transfer predictions to the choice of turbulence model.

The predictions shown in this section were obtained using the

Baldwin-Lomax(1978) turbulence model. Predictions shown

using this model will be labeled as Baldwin-Lomax results.

The following figures illustrate the differences in heat transfer

attributable solely to differences in the turbulence models.

Figure 9 shows the prediction using the Baldwin-Lomax
turbulence model for the same test case as in figure 2b. The

Stanton numbers are in better agreement with the data using

the 8aldwin-Lomax model The peak endwall heat transfer

has been reduced considerably, and is in closer agreement

with the experimental data.
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Fig. 8a. Stanton No. comparisons, Data of Giel et al.,
Re2 = 26 x l0 s, M2 = 1.3
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Fig. 8b. Stanton No. comparisons, Data of Giel et al.,

Re2 = 13 × 10 "_,:_12 = 1.3
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Figure I0 shows predictionusing the Baldwin-Lomax

model for the testcase in figure3. Only the hub endwall

predictionisshown. The relativedifferencesbetween the

two predictionswere the same forthe hub and tip.The vane

surfacepredictionin figure10 shows better agreement with

the presssureand suctionsurfacedata than the comparison

shown in figure3c. There are differencesin the vane suc-

tionsurfaceheat transferbetween the two predictions.The

predictionsinfigure10 were calculatedassuming the turbu-

lence intensityremained constant. This caused the startof

transitionto move forward on the suctionsurface.The data

indicate that the assumption of variableturbulence inten-

sitygives betteragreement for the transitionlocation.The

hub heat transferpredictionusingthe Baldwin-Lomax model

does not agree with the experimental resultsbetterthan the

predictionusingChima's turbulencemodel. The predictions

using the BMdwin-Loma.x model are significantlylower near

the vane suctionsurfacebeyond the throat.

Figure 11 shows the predictionfordesign conditionused

by Harasagama and Wedlake(1991). These resultsshould be

compared with the data in figure4a. The effectof varying

the turbulence Model for thistest case are very similarto

the resultsshown in the previousfigureforthe data of Arts

and Heider. The vane surfaceheat transfer predictionis

somewhat improved, but theendwall heat transferprediction

agreeslesswellwith the experimental data.

There isa high degreeof similaritybetween the predic-

tionsforthe data ofGoldsteinand Spores,and forthe data of

Graziani et ai.(1980).The effectsof varying the turbulence

model were the same for the two configurations.Figure 12

shows the hub and rotorsurfacepredictionsforthe same case

as given infigure5. Somewhat surprisingly,substitutingthe

Baldwin-Lomax turbulencemodel has only a small effecton

the endwall heat transfer.The predictedheat transferisstill

significantlyhigherthan the data. The resultsshown in fig-

ure 12 forthe vane surfaceillustratetwo independent effects.

For the suctionsurfacethe figureillustratesthe effectof a

differentturbulencemodel. The effectsaxe small. For the

pressuresurfacefigure12 illustratesthe effectofsuppressing

transition.A laminar calculationfor the pressuresurfaceis

ingood agreement with the experimental data.

Using the Baldwin-Lomax turbulencemodel to predicted

the high Reynolds number rotor testcase of Blair(1994)is

illustratedin figure13. These resultsshould be compared

with those shown in figure7b. Here the effectofvarying the

turbulence model isrelativelysmall. The flow distribution

determined for a rotatingblade with clearanceappears to
have the dominant effecton surfaceheat transfer.

Figure 14 illustratesthe effectofusingthe Baldwin-Lomax

turbulence model forthe high Reynolds number testcaseof

Giel et al. These predictionsshould be compared with the

results in figure 8a. These heat transfer rates are lower than

those calculated usi_Lg Chima's turbulence model. Chima's

model givc_ heat transfer rates that are in better agreement
with (,he experimental data.
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Fig. 9. Predictionof high Reynolds number case of Boyle
and Russellwith Baldwin-Lomax turbulencemodel.
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BothChima'sturbulencemodelandtheBaldwin-Lomax
modelare two layer models, and have the same inner layer

formulation. The outer layer eddy viscosity is determined

differently in each model. These differences, which are de-

scribed by Chima et al.(1993), give rise to the differences
in the heat transfer predictions. Greater outer layer eddy

viscosities are associated with higher heat transfer rates. In-

creased outer layer eddy viscosities result from increased wall
distances at which the outer layer values are determined.

CONCLUDING REMARKS

Comparisons were shown between predicted and measured
blade and endwall heat transfer for data obtained from a

variety of sources. Unfortunately, one turbulence model did

not give good agreement for all cases. For all of the cases
examined the baseline model gave peak heat transfer rates

as high or higher than the measured values. Those cases for
which the wall-to-gas temperature ratio was characteristic of

actual engine conditions had predicted heat transfer rates in

good agreement with the data overall. The predictions were
only slightly higher on the endwall at the peak location in

the throat region. Overall, the model was conservative in

that it gave higher than measured heat transfer rates.

Comparisons for cases with wall-to-gas temperature ratios

not typical of actual engine operation, and low Mach num-
bers showed that the baseline turbulence model was conser-

vative, perhaps to an unacceptably high degree. An alter-
nate turbulence model gave reasonably good heat transfer

predictions for these test cases. However, this model under-

predicted the heat transfer for cases with wall-to-gas tem-
perature ratios representative of actual engine operation.

._ x II'*

Fig. 12. Prediction of Graziaai et ai. with Baldwin-Lomax
turbulence model.
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i Fig. 13. Prediction of Blair's high Re case with Baldwin-

Lomax turbulence model.
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Fig. 14 Prediction of high Reynolds number case of Giel et
Fig. 11 Prediction of high Re ca-se of llarasagama and Wed- al. with Baldwin-Lomax turbulence model.
lake with Baldwin-l.orna2¢ turbulence model. 15
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FOR A RANGE OF TEST CONDITIONS
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ABSTRACT

Comparisons are shown between predictions and exper-
imental data for blade and endwall heat transfer. The com-

parisons are given for both vane and rotor geometries over

an extensive range of Reynolds and Mach numbers. Com-

parisons are made with experimental data from a variety of
sources. A number of turbulence models are available for pre-

dicting blade surface heat transfer, as well as aerodynamic

performance. The results of an investigation to determine
the turbulence model which gives the best agreement with

experimental data over a wide range of test conditions are

presented.

Nomenclature

C

C=

%
d
h

Ec

M2
Nu

P
Pr

Prt

Re2

Sc
St
St,,_

S

T

Tu

W

6

#t

P

True chord

Axial chord

Specific heat
Distance from surface

Span

Eckertn mber,W /cp/l(T;- T )I
Isentropic exit relative Mach No.
Nasselt No. based on true chord and k(T_)

Pressure

Prandlt No.

Turbulent Prandlt No.

Reynolds No. based on true chord and M2
Schmidt number

Stanton number
Mass transfer Stanton number

Surface distance

Temperature

Turbulence intensity

Relative velocity

Normalized distance of first grid line from blade

Inlet boundary layer thickness

Turbulent eddy viscosity

Density

Subscripts

EXIT

!
?

g

l

2

- Exit of computational domain
- Full

- Gas total condition

- Surface
- inlet

- outlet

INTRODUCTION

A relatively large number of three-dimensional Navier-

Stokes analyses for turbine blade row heat transfer have been

reported in the literature. Each of the reported results have
shown comparisons with at most a few experimental cases. In

order to validate an approach to predicting turbine blade row

heat transfer, it is desirable to show comparisons with experi-

mental data for an extended range of test conditions. Among
the earliest heat transfer predictions using steady state three-

dimensional analyses were those of Hah(1989) and Choi and

Knight(1988). They showed comparisons with the experi-
mental data of Graziani et al.(1980). The experimental data

were for a large scale rotor geometry tested in a linear cas-
cade at low Mach number. The tests were conducted with

a uniform heat flux boundary condition which resulted in

an average Tw/T_ of approximately 1.08. Chimaet a1.(1993)
showed comparisons ofendwall heat transfer predictions with

the experimental data of Boyle and Russell(1990). Again,

the experimental data were for a large scale, relatively low
speed linear cascade, with low turbulence intensity and a

T,_/T_ = 1.07. Data have been obtained on a large scale
rotating turbine rotor by Blair(1994). These data were for a
variety of Reynolds numbers and incidence angles. In these
tests the Mach numbers were relatively low, and the average

Tw/T_ = 1.1. Data for stator vanes at transonic Mach num-
bers and wall-to-gas temperature ratios typical of gas turbine

applications have been measured by a number of researchers.

York ct a1.(1984) obtained data in a linear cascade for a



Table I.- Descriptionof casesused in analysis

Vanes

Source of data

York et ai.(1984)

Arts and Heider(1994)

Boyle and Russell(1990)

Harasagama and Wedlake(1990)

Re2_XIO -5

2.1-18.0

22.5

3.4-20

17-52

MEXIT

0.3-1.1

0.92-1.15

0.1-0.7

0.94-1.29

0.75

0.73

1.1

0.66

Cascade Test approach

Linear Steady state
Annular Shock tube

Linear Liquid Crystals
Annular Shock tube

Rotors

Source of data

Blair(1994)

Goldstein and Spores(1988)

Chen and Goldstein(1992)

Graziani et ai.(1980)

Giel et al.(1996)

ReleXlO -s

2.7-7.1

1.4-2.3
1.2-2.0

10.7

13-26

MEXIT Tw/T_
0.06-0.15 1.1

0.03-0.04 1
0.02-0.03 1

0.1 1.1

1.0-1.3 1.1

Cascade

Rotating

Linear

Linear

Linear

Linear

Test approach

Steady state

Napthalene

Napthalene

Steady state

Steady state

Table II. - Characteristics of experimental data

Source of data Tu%

York et ai.(1984)

Arts and Heider(1994)

Boyle and Russell(1990)

Harasagama and Wedlake(1990)

Vanes

Heat Transfer

Endwall Blade

7.0 Y N

4.5 Y Y

1.0 Y N

6.5 Y Y

(T_,)x/T_ Ec No. of
Cases

1.0 1.56 4

0.73 1.56 1

1.0 1.51 2

0.66 1.47 5

Source of data Tu%

Blair(1994)

Goldstein and Spores(1988)

Chen and Goldstein(1992)

Graziani et al.(1980)

Giel et a1.(1995)

Rotors

Heat Transfer

Endwall Blade

High Y Y
1.2 Y N

1.2 N Y

1 Y Y

0.3-7 Y N

(T,o )liT_ Ec No. of
Cases

1.0 0.15 3

1.0 N.A. 3

1.0 N.A. I

1.0 0.18 2

1.0 5.3-8 4

stator vane configuration. Harasagama and Wedlake(1991),

Chana(1992), and Arts and Heider(1994) presented stator
vane heat transferobtained in shock tube facilities for an-

nular cascades. Predictionsusing three-dimensionalNavier-

Stokes analyses were obtained by Heider and Arts(1994) for

the data of Arts and Heider(1994),and by Boyle and Jack-

son(1995) for the data of Chana(1994).

In general most predictionspresented in the literature

showed comparisons with a limitednumber of experimental
cases.The data availableinthe literaturecovera wide vari-

ety of test conditions.In additionto a range ofgeometries,

Reynolds and Much numbers, therearesignificantdifferences

in turbulence intensity,inletboundary layerthicknesses,as

wellas inletblade row temperature profileamong the exper-

imental data.

The work reported hereinconsistsof comparisonsofpre-

dictedblade row heat transfer with experimentai d_tta for a

variety of test configurations. The purpo_ of examining a

variety of test configurations is to increase confidence in the
ability of both the analysis and turbulence model to predict

blade row heat transfer. The analysis was done using the

steady state three-dimensional Navier-Stokes code described

by Chima(1991), and by Chima and Yokota(1988). Results

were obtained using algebraic turbulence models.

EXPERIMENTAL DATA USED FOR

VERIFICATION

Table I gives a description of the experimental data

sources with which the computational results are compared.

There are four stator and four rotor geometries. The data of

Goldstein and Spores(1988) are for the same rotor geometry

as Chen and Goldstein(1992). The maximum Mach number
for each of the stator tests is in the transonic flow regime,

but only the rotor test data of Giel et a1.(1996) is in the tran-

sonic region• Except for the d_tta of Graziani et ai.(1980), the



Table III.- Characteristics of cases examined

Source of data c,,(cm)

York et a1.(1984) 5.25

Arts and Heider(1994) 4.21

Boyle and Russell(1990) 13.8

• 3.96Haxasagama and
Wedlake(1990)

Vanes

c,/c= h/c= 6S/C=
1.775 1.45 0.12

0.12

0.12

0.12

1.836 1.19 0.0012

1.393 1.104 0.184
0.184

1.881 1.26 0.093

Re_XIO -5 Rel/Re2
2.1 0.36

6.2 0.32

18.0 0.32

18.0 0.30

22.5 0.25

3.4 0.35

20.0 0.35

34.0

34.0

34.0

17.0

52.0

0.25

0.24
0.23

0.24

0.24

PdPI
0.951

0.721

0.721

0.468

0.440

0.996

0.836

0.566

0.445

0.366

0.445

0.445

y tc=' (T,,,hit.;
2.8e-05 1.0
2.2e-05 1.0

8.0e-06 1.0

7.4e-06 1.0

1.0e-05 0.73

0.9e-04 1.0

1.8e-05 1.0

5.6e-06 0.659

5.0e-06 0.659
4.7e-06 0.659

9.4e-06 0.659

3.4e-06 0.659

Source of data c=,(cm)

Blair(1994) 16.1

14.53Goldstein and

Spores(1988)

Chen and Goldstein(1992)

Graziani et a1.(1980)

Giel et al.(1996)

14.53

28.13

12.7

Rotors

cdc= h/c,, 6sic:
1.22 0.946 0.05

0.05

0.05

1.1641 2.065 0.10

0.20
0.08

1.1641 2.065 0.18

1.22 0.99 0.014

0.117

1.45 1.20 0.24

0.27

0.15
0.24

Re2XIO -_ R,ei/Re_
2.7 0.59

2.7 0.78

7.1 0.78

2.3 0.61

2.3 0.61

1.4 0.61

2.0 0.61

10.8 0.63

10.8 0.63

26.

13.

26.

26.

0.53

0.53

0.53

0.53

PEXIT

0.997
0.997

0.980

0.998

0.998

0.999

0.998

0.985

0.985

0.361

0.361

0.361
0.528

(T )IlT 
1.0e-04 1.0

1.0e-04 1.0

1.0e-04 1.0

1.0e-04 1

1.0e-04 1
1.5e-04 1

l.Oe-04 i

3.0e-05 1.0

3.0e-05 1.0

7.4e-06 1.00

1.4e-05 1.00

7.4e-06 1.00

8.9e-06 1.00

low Much numbers are associated with low Reynolds num-

bers. Except for the data of Boyle and Russell(1990), the

stator data are all for Tw/T_ values representative of actual
engine applications. The data for rotor geometries axe all for

Tw/T_ clooe to unity. Data obtained using liquid crystals or
Napthalene permit near continuous measurement of the sur-

face heat transfer. Blair(1994) obtained data in a rotating

large scale facility for a range of incidences.

Table II gives characteristics of the various data sources.

The data of Boyle and Russell(1990) were for a low turbu-

lence intensity, while the other stator data were for moderate

to high levels of turbulence. All cases had endwaU data, and

Arts and Heider(1994) and Iiarasagarna and Wedlake(1990)
showed vane heat transfer data. High turbulence levels were

present in Blair's test and for some of the tests of Giel et hi.
The other rotor data had low turbulence levels.

Table II also lists the Eckert,Ec, numbers for each data

source. The values shown are for the maximum blade row

exit velocity for each data set. The Ec number indicates the

importance of viscous dissipation in determining the near
wall temperature profile. All of the stator test cases have

maximum Ec numbers greater than one, while only the rotor

cases of Giel et al. had Ec values greater than 0.2. Because

the cases with wall-to-gas temperature ratios representative

of actual engine conditions also have high exit Much num-

bers, these cases also have relatively high Eckert numbers.

Table III shows geometric, flow, and thermal character-
istics of the various cases examined. The inlet and exit

Reynolds numbers are shown for each test case. Both

Reynolds numbers are given to facilitate comparisons among
different investigators. Some experimental heat transfer re-

sults were given using inlet conditions, while others used exit
conditions. Those cases where the inlet wall temperature

ratio,(T,_)i/T_, is given as unit)' have unheated,(or uncooled
in the case of York et al.), starting lengths. This table also
shows the near wall spacing used in the computational anal-

ysis. This is the spacing of the first grid line from either
the blade or endwal[ surface. This spacing, yl/c=, was de-

termined from a flat plate correlation so a._ to give a y+ of

approximately one.



DESCRIPTION OF COMPUTATIONAL

ANALYSIS

Steady state heat transferpredictionswere made using

the three-dimensionalNavier-Stokescomputer code RVC3D.

This code isa finitedifferenceanalysis,and was described

by Chiton(1991), and by Chima mad Yokota(1988). The

analysisused a Runge-Kutta time marching approach. Im-

plicitresidualsmoothing is used to improve convergence.

Three algebraicturbulence models are availablefor use in

the code. These models can be viewed as variationsof the

commonly used Baldwin-Lomax(1978) algebraicturbulence

model. Cases were run using each of the three turbulence

models. Results are presented herein for the turbulence

model which gave the best agreement with experimentaldata

overall.The model chosen isthe one describedby Chiton et

al.(1993).Predictionsusing an alternativeturbulencemodel

are given forselectedcases.

Since many of these testcases,and actualengine op-

eration,were at relativelyhigh turbulence levels,the transi-

tioncriteriaofMayle(1991) was incorporatedintothe turbu-

lencemodel. The Baldwin-Loma_x transitioncriteriadoes not

account for fteestream turbulence effects.High freestream

turbulence resultsin leading edge Froaslingnumbers sig-
nificantlygreaterthan unity. To account for the effectof

freestreaxnturbulenceon laminar heat transfer,the model of

Smith mad Kuethe(1968) was incorporatedinto the calcula-

tionof turbulent viscosity.

Researchers showed good agreement between predicted

and measured turbine blade heat transfer using both alge-

braic and two-equation turbulence models. For example,

the experimental cascade data of Graziani et al.(1980) have

been used for a number of different heat transfer predictions.

Bah(1989), and Choi and Knight(1988) used two-equations
turbulence models to predict the blade and endwall heat

transfer. Ameri and Arnone(1994) analyzed this case using
both two-equation and algebraic turbulence models. All of

the predictions agree reasonably well with the experimental

data. The aforementioned experimental case, along with sev-
eral other available in the literature, is for low Much number

flow. It remains to be seen if algebraic models are as ef-

fective as two equation models in predicting turbine blade
heat transfer for high Much and Reynolds number cases. As

shown by Ameri and Arnone(1994), heat transfer predic-

tions using two-equation models required nearly twice the

CPU time to converge, compared with an algebraic model

solution. Results are presented herein for high Reynolds

number cases, which require a moderate to large number of
grid points. Since two equation turbulence models have not

demonstrated a significant superiority over algebraic models

for turbine blade heat transfer predictions, and CPU time is

a significant consideration, algebraic turbulence models were
used. BoLh Pr and Prz were held constant at 0.70 and 0.90

respectively.

A uniform temperature boundary conditionwas imposed

on allsolidboundaries. Spanwise radialequilibriumwas as-

sumed at the exit boundary. At each spanwise locationthe

exit staticpressure was allowed to vary in the circumfer-

entialdirection. The average hub exit staticpressure was

specified,but the pitchwisevariationwas determined from

the internalflow field.Uniform totalconditionswere speci-

fiedforthe inletcore flow,and uniform staticpressureswere

specifiedthrough the boundary layers.The inletboundary

layertemperature and velocityprofileswere determined us-

ing fiatplate correlationsin which the frictionfactor and

Stanton number are determined by thespecifiedinletbound-

ary layerthickness.The correlationsare thosegiven by Kays

and Crawford(1980). Using a simple power law forthe inlet

temperature profileproduces an erroneous result,since the

power law givesan infinitegradientat the wall.

A largenumber of caseswere examined, placing a pre-

mium on obtaing solutionswith a minimum of CPU time.

Therefore,moderate sizegridswere used. A typicalgrid size

was 185 x 49 x 65, and was chosen based on previous work,

(Boyle and Giel(1992)). Even though midspan symmetry

was assumed for the lineargeometry testcases,65 spanwise

grid lineswere used to maintain a desirablestretchingra-

tio for the high Reynolds number test cases. C-type grids

were generated using the procedure described by Arnone

et. ai.(1992).In thisprocedure grid linesnear the surfaces

are embedded within a coarsegrid,which isgenerated using

Sorenson's(1980)technique.Itwas found necessaryto main-

taingridstretchingratioslessthan 1.3inadditionto having

a !/+near unity to obtain gridindependent results.

The primary convergence criteriawas that the surface

heat transferremained constant as the solutionadvanced in

time. Itwas observed that the ratioofinlettoexitmass flow

variedgreatlyduring the firstfivehundred or so iterations.

In additionto the stabilityinthe surfaceheat transfer,cases

were run untilthere was only a small variationbetween the

inletand exit mass flow. When thesecriteriawere met, it

was found that the residualshad decreasedby threeor more

orders of magnitude. The analysiswas run on a Cray C90

machine. The CPU time for convergence was between one

and threehours, with the low Much number casesrequiring
the most time. The low Much number cases were run with

a minimum P2/P_ of 0.985 and the experimental Reynolds

number to improve convergence speed. A testcase with a

higher pressure ratio,and the same Reynolds number took

significantlylonger to convergeto the same result.The com-

puter code was vectorizedby the developer,Chima(1991).

Consequently, the average CPU time per grid point to ad-

vance the solutionone time cyclewas 6 x 10-¢ seconds.

DISCUSSION of RESULTS

Table lI shows that 25 cases were examined. Only _._-

lected ca.,_will be compared graphically, although t,he prc_-
dict_ions for all ca.scs will be discussed.



Vanes

Comparison with data of York et a1.(1984) The data of

York et al.(1984) were for a range of test conditions, but
results were presented for only a single representative case.

The report by Hylton et a1.(1981) contained the data for
the test matrix. Heat transfer coefficients were presented in

terms of Stanton number based on local conditions. Figure

1 shows comparisons between the predicted and measured
Stanton numbers for the Ms -- 0.27 and Re2 = 2.1 x 10s

case, and the M2 = 1.1, and /_e_ = 18. x 105 case. The

Stanton number based on inlet conditions is also given for

the higher Mach number case. It is included to facilitate

comparisons with data from other sources. In this plot a
percentage variation in Stanton number represents the same

percentage variation in heat transfer coefficient.
The predictions, and to some extent the experimental

data, show very high values close to the leading edge of the

pressure surface. This is a result of the Stanton number def-
inition used. These high Stanton numbers do not represent

regions of high heat transfer coefficients, since this is a low

velocity region. With this definition, when the velocity de-
creases, the Stanton number increases, even when the heat

transfer coefficient is constant. The average predicted Stun-

ton number agrees well with the average experimental Stun-

ton number. Comparing the Stanton number based on local

velocity predictions with experimental values shows some dif-
ferenc_ in the endwall heat transfer patterns. Part of the

differences in heat transfer patterns could be due to differ-
ences in the choice of AT used to determine the Stanton

number. In the predictions the endwall pressure distribution
was used to determine the local velocity for the Stanton num-

ber, as well as the adiabatic wall temperature. The reference

AT in the experimental Stanton number was based on an

experimentally determined adiabatic wall temperature. The

experimental adiabatic wall temperatures were considerably
lower than adiabatic wall temperatures calculated assuming

a recovery factor of Pr °3"_. Using the experimentl adiabatic

wall temperature to determine the predicted Stantou num-

bers, increases the values by up to 30%.

The third plot for the higher Much number case shows
Stanton number based on inlet velocity. Here the heat trans-

fer coefficient and Stanton number are proportional. The

maximum heat transfer occurs in the midpassage upstream

of the throat. In the unguided portion of the passage there is

a decrease in heat transfer across the passage in moving from

the pressure side to the suction surface. This same pattern

was observed by Georgiou et a].(1979) in tests of a stator

vane, conducted in a shock tube facility.

Upstream of the vane the predictions show a noticeable

degree of pitchwise nonuniformity. This is partially due to
the interaction of the unheated starting length boundary con-

dition with a C-type grid. C-type grids have nonuniform

spacing near the mid-pitch line as the iuleL, which results in

pitchwise non-ur_iform StantoJ, number contours near the

\

Fig. la - Comparison of endwall Stanton No. Data of York

et al., Re2 = 2.1 x l0 s, Ms = 0.27

endwall temperature discontinuity. However, as will be

shown subsequently, C-type grids have an advantage in pre-

dicting the Stanton number in the leading edge region for
the endwall and blade. Also, the Stanton number nonuni-

fortuity occurs only when there is a step change in endwall

temperatures near the inlet. Calculations in which the lo-
cation of the start of endwall cooling was varied, or with

different grid spacing in the region on the temperature dis-
continuity, showed virtually identical heat transfer within the

blade passage.
Although not shown in the figure, comparisons for two

Ms = 0.70 cases at different Reynolds numbers were very

similar to the comparisons for the M2 = 1.1 case shown.

Considering the results for all cases, the degree of agreement

between the analysis and the d_ta is reasonably good.
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Fig. 2a - Comparison of endwall Stanton No. Data of Boyle
and Russell, Re2 = 3.4 x l0 s

Data of Boyle and Russell.In these teststhe Reynolds

number was variedby varying the speed of the airthrough

the cascade. Consequently, therewas no independent varia-

tionof Reynolds and Mach numbers. In additiontovarying

the Reynolds number, the effectsof variationofinletbound-

ary layerthicknesswere alsopresented by Boyle and Russell.

The effectsofvariationininletboundary layerthicknesswere

small. Comparisons are shown in figure2 for a singleinlet

boundary layerthicknessat the highestand lowestReynolds

numbers tested.Parts a and b offigure2 compare predicted

and measured Stanton numbers based on inletconditionsfor

two Reynolds numbers.

Within the passage the analysisoverpredictsthe Stan-

ton number to a considerableextent.The regionwithin the

passage which shows the greatestdisagreement is near the

throat. For the low Reynolds number case the predictions

show only a very small regionnear the pressuresideof the

throatwith a Stanton number of 11.1x 10-3. But, the pre-

dictionsshow a peak levelinexcessof 15 x 10-3 in the same

region. Close to the leading edge region the analysis is better

agreement with the data. The liquid crystal measurements

show a series of heat transfer conLours in front of the leading
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Fig. 2b - Comparison ofendwall Stanton

and Russell,Re2 = 20 x l0s

,?'
No. Data of Boyle

edge. The heat transfer rates increase substantially in ap-

proaching the leading edge. Boyle and Russell showed lead-

ing edge augmentation approaching a factor of three at 0.2 x

the leading edge diameter in front of the leading edge. The
predictions show a series of nearly concentric contours, which

agree well with the measurements in terms of location and

level of augmentation.

For the high Reynolds number case the analysis over-

predicts the heat transfer in the throat region. As will be

shown, a significant amount of overprediction was due to the
choice of turbulence model. To insure that the discrepancy

in the heat transfer prediction was due to the choice of turbu-

lence model, other factors were examined computationally.

The vane was neither heated nor cooled, and the endwall was

subjected to a nearly constant heat flux. There was no signif-
icant difference in the calculated endwall heat transfer when

the vane was unheated compared to when it was maintained

at the endwall temperature. There was also no significant

variation in endwall Stanton number when the endwall was

subject to a uniform heat flux boundary condition.
Data of Arts and Heider. Figure 3 shows a comparison

of the predicted and measured heat transfer data of Arts

and Hairier(1994). These data were obtained in a shock tube
so that uncertainties due to a step change in the endwall

thermal boundary condition do not arise. The data are for

Nu X 10-3LI_L _

L

, ..,,,.

l'l I 3
_ 1.5

1.5

Fig. 3a- Comparison of hub Nusselt No. Data of Arts and
Heider.

a stator at transonic exit conditions. The data were given as

heat transfer coefficients, and have been normalized by the

true chord and inlet conductivity to yield Nusselt numbers.

There is good agreement between the predicted and mea-
sured Nusselt numbers for both the hub and casing surfaces.

In the experiment vane surface heat transfer measure-
ments were made at 6%, 50%, and 94% of span. Figure 3c

compares the measured and predicted heat transfer for the

vane. For the pressure surface the measurements and predic-

tions show little spanwise variation in heat transfer, though

the analysis is somewhat greater than the data. Because of

the high Reynolds number and moderate turbulence inten-

sity, the predictions for the pressure surface gave transition

close to the leading edge. The degree of agreement was sig-

nificantly affected by the choice of transition length model.
In the transition model the local turbulence intensity was ad-

justed based on the local freestream velocity. The analysis

predicts the heat transfer well close to the endwall. At the

midspan after transition, in what is essentially the uncovered

portion of the vane, the analysis overpredicts the suction sur-
face heat transfer. It, will be shown that this overprediction

is largely do to the choice of turbulence model.
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Fig. 3c Vane surface Nusselt No. Data of Arts and Heider.

Data of Harasa$ama and Wedlake. Figure 4 compares
hub and vane heat transfer results for two different Reynolds
numbers. This case is for a M2 = 1.14. Vane heat transfer

is mainly affected by variations in Reynolds number.

The Nusselt number varies with Reynolds number, but

the degree of agreement between the prediction and mea-

surement remains about the same. The analysis predicts a

small, higher than measured, heat transfer region close to the

pressure surface. Also, near the suction surface the analysis

predicts a region of too low heat transfer aft of the throat re-

gion. The analysis overpredicts suction surface heat transfer

in the transition region, and is slightly higher for the un-
covered portion of the vane. While the variation in Nnsselt

number is not large, both the prediction and measurements
show a lower heat transfer close to the suction surface down-
stream of the throat as the Mach number increases.

The degree of agreement between the analysis and the
data for the casing heat transfer was about the same as for

the hub. Variations in exit Math number did not significantly
affect the degree of agreement with the experimental data.

The degree of agreement for the vane surface heat transfer
was also not affected by variations in Mach number.

Rotors

Data of Graziani et al. Figure 5 compares the predic-
tions with the measurements of Graziani et al. for the thin

inlet boundary layer thicknesses. The measurements for the

rotor surface show a slightly larger spanwise region of two-
dimensional heat transfer distribution for the thinner boun&

ary layer. In general the analysis overpredicts the heat trans-
fer on both the rotor blade and endwall. On the rotor the

analysis overpredicts the heat transfer on the rear portion of

the pressure surface. This is a consequence of the transition

model used. The model gave a good prediction for the suc-
tion surface transition location for the vane data of Arts and

Heider. However, for this rotor case, the model predicted

transition close to the leading edge. An adverse pressure

gradient, close to the leading edge resulted in a calculated

P_0 sufficient to trigger transition in the turbulence model.
Evidently, pressure surface transition did not occur in the

experiment. On the suction surface the Stanton number is

too high at transition, but otherwise the analysis predicts

the heat transfer distribution reasonably well. The analysis

severely overpredicts the endwall heat transfer. The largest

overprediction occurs near the throat region. The effects of

using a different turbulence model will be examined subse-

quently for this case.

Neither the measurements nor the predictions showed

a large effect of varying the inlet boundary laver thickness
on either the rotor blade or the endwall heat transfer. Bo_h

showed a slight decrease in peak passage heat transfer for

the thicker inlet, boundary layer.
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Data of Graziani et al;

Data of Goldstein and Spores. Figure 6a compares the

predicted and measured endwall heat transfer for the higher
Reynolds number-thin inlet boundary layer case of Goldstein

and Spores. The data of Goldstein and Spores were normal-

ized so that at an z/cx = 0.2 upstr,_am of the leading edge

10

the normMized value was unity. Part of the normalization

accounted for the unheated starting length. This factor was

1.24 at the point where the normalized value was unity and

decreased to 1.14 at the rotor trailing edge. Predictions were

normalized in the same manner. In addition to the compar-
ison of experimental Stanton numbers, the Stanton number

based on inletconditionsisshown. The natureofthe naptha-

lenemeasurement techniqueallowsforverydetailedlocalized

measurements. Both the measurements and predictionsshow

very high heat transferin frontof the leadingedge, with a

peak ratioin excessof 3.25. The data show the peak pas-

sage heat transfer to occur near rnidpassage, and somewhat

upstream of the throat region. The analysis tends to overpre-

diet the heat transfer in the throat region, but does show the

correct location of the peak passage heat transfer. Compar-

ing the two calculations shows that normalizing the Stanton

number to account for the starting length has only a small
effect on the shape of the endwall heat transfer distribution.

The normalized comparison does not verify the absolute

level of the predicted heat transfer. Goldstein and Spores

gave the mass transfer Stanton number,St,_, as 1.472 x 10 -3,

where the normalized value was unity. Heat transfer predic-

tions were converted to mass traaasfer values using the rela-
tionship St = St,,(Pr/Sc) "-1. Chen and Goldstein(1992)

stated that 2.0 < Sc < 2.5, and chose n = 0.33. Assuming
Sc = 2.0 yields heat transfer Stanton numbers almost ex-

actly twice the mass transfer Stanton numbers. This ratio

gives a heat transfer Stanton numbers of 0.0029, where the

St,, was 1.472 x 10 -3 . The predicted Stanton number at the

location where the experimental Stanton number ratio was

unity was 0.003. This indicates good agreement between the
analysis and the experimental data in terms of the Stanton

number level in the leading edge region.

There were only small differences in the experimental

data among the three cases. The agreement between the

predictions and the data was better for the high Reynolds

number cases. Allowing the near wall damping coefficient,

A +, to be a function of the pressure gradient did not improve
the agreement with the data.

Figure 6b shows comparisons for the rotor heat transfer

measured by Chen and Goldstein(1992). The experimental

data were presented in terms of St,, values. The predicted

St values were divided by 2 for comparison purposes. There

is a two-dimensional region away from the endwall, and a

three-dimensional region associated with the passage vortex.

The experimental suction surface data show a line separating

a high heat transfer region close to the endwall from the low

Stanton number region towards midspan. The predictions

show the same separation into two regions, but the demar-
cation line does not advance up the span as rapidly, and the

peak value near the endwall is lower. Also, the prcdic_ioqs

agree with the measurements in the leading edge region, lu

the measurements there is a high heat, transfer regioll Lo-

wards the trailing edge, but the predict.ions show low valu_

in this r_'gion. Increasing the Tu level in t,he analysis m_,_d

tra.sitiou forward, and gave high heal t.ransfi_r in this rt'gion,
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Data of Blair. Figure 7 compares predicted and measured
Stanton numbers for heat transfer to the hub and blade sur-

face for two Reynolds numbers. The $tanton numbers are
based on the rotor exit relative conditions. Even though the

Reynolds number varied by a factor of three, the measured

Stanton numbers are only slightly lower. The predictions are

only moderately lower. The expected change is noL to large

since assuming St o¢ 1-¢_e-°2 gives only a 25% decrease in
heat transfer for a factor of three increase in Re. There is

Goldstein.

good agreement with the data in the endwall leadingedge

region.The peak value predictedinthe passage issomewhat

greaterthan the experimental value,and agreesbest for the

high Reynolds number case.Although not shown inthe mea-

surements there isa peak predictedheat transferlevelin the

wake as great as the peak passage value.

The predicted rotor midspan heat transferon the rear

portionof the suction surfaceagrees wellwith the data. A

Tu of10% was used inthe analysis,and resultedintransition

closertothe leadingedge than isevidenced by the data. The

data show high heat transferlevelson the suction surface

near the hub, and closeto the tip,where the heat transferis

affectedby the clearanceflows.The analysispredictsthese

high heat transferrates. In terms of the rotor hub region

heat transfer, these results agree better with the data than

do the predictions for the data of Chen and Goldstein(1992).

The heat transfer predictions for the pressure surface are

higher than the data. This is due to an early prediction for
the start of transition.

Variations in the inlet flow angle did not affect the degree

of agreement between the analysis and the data.

Data of Giel et al. Figure 8 compares predicted and mea-
sured Stanton numbers for two Reynolds numbers. The cazses

are for an M2 -- 1.3, and a low Tu. Predicted Stanton num-
bers are calculated in the same manner as the experimental

11
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data, and is based on the calculated adiabatic wall temper-
ature. In common with mo6t of the previous comparisons,

the agreement in the leading edge region is good. Within the

passage the analysis shows a somewhat higher heat transfer

level, but the correct trend in the distribution. The analy-

sis, and especially the low Reynolds number data show what

appears to be the effect of a separation line going from the

pressure side leading edge region to midchord on the suc-
tion surface. In the data high heat transfer levels are seen

upstream of this line, while the prediction show high levels
immediately downstream of this line. Unlike several of the

previous comparisons, the analysis fails to show very high

heat transfer rates just downstream of the trailing edge. This

may have been caused by insufficient grid resolution in this

region.
Comparisons were made with the data of Giel et al.

for cases in which the inlet boundary layer thickness was re-

duced, and in which the exit Mach number was reduced to
1.0. The reduced inlet boundary layer thickness resulted in

reduced secondary flows. The measured endwaU heat trans-

fer near the pressure surface just upstream of the throat was
lowered when there was a thinner inlet boundary layer. The

analysis showed the same behavior. Reducing the exit Math

number gave slightly higher heat transfer downstream of the
throat. This effect was also seen in the predictions.

Turbulence model effects

All of the comparisons shown so far have been for the tur-

bulence model described by Chima et al.(1993). The com-

parisons that were given showed the predicted heat trans-

fer was generally higher than the measuremeuts. For com-

parisons where T,_/T_ was characteristic of engine operat-
ing conditions, the degree of overprediction was small. For

comparisons where T,_/T_ was small, and the Math number
was low, the degree of overprediction was high. The pri-

mary cause of these results is the choice of turbulence model.
Results presented in this section illustrate the effects of an

alternative algebraic turbulence model on heat transfer pre-
dictions. These comparisons illustrate the sensitivity of the

heat transfer predictions to the choice of turbulence model.

The predictions shown in this section were obtained using the

Baldwin-Lomax(1978) turbulence model. Predictions shown

using this model will be labeled as Baldwin-Lomax results.

The following figures illustrate the differences in heat transfer
attributable solely to differences in the turbulence models.

Figure 9 shows the prediction using the Baldwin-Lomax
turbulence model for the same t_t case as in figure 2b. The

Stanton numbers are in better agreement with the data using

the Baldwin-Lomax model. The peak endwall heat transfer

has been reduced considerably, and is in closer agreement

with the experimental data.

3.0 "( °

Fig. 8a. Stanton No. comparisons, Data of Giel et al.,

Re2 : 26 x l0 s, M2 : 1.3

M_ =1.3 ,.0. .3.0_.- _..._ -_ J
ro _ " 1._\3o x,.,..i U 3.5 __ 3.0

_d 5.0_ _-._ _- /

3.o-------1__ 2.s_

•

E_a rimental

3 .if"- _

Prediction

Fig. 8b. Stanton No. comparisons, Data of Giel et al.,
Re2 = 13 × 10_,M._ = 1.3
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Figure 10 shows predictionusing the Baldwin-Lomax

model for the testcase in figure3. Only the hub endwall

predictionisshown. The relativedifferencesbetween the

two predictionswere the same forthe hub and tip.The vane

surfacepredictionin figure10 shows betteragreement with

the presssureand suctionsurfacedata than the comparison

shown in figure3c. There are differencesin the vane suc-

tionsurfaceheat transferbetween the two predictions.The

predictionsinfigure10 were calculatedassuming the turbu-

lenceintensityremained constant. This caused the startof

transitionto move forward on the suctionsurfa_. The data

indicatethat the assumption of vuriableturbulence inten-

sitygivesbetteragreement for the transitionlocation.The

hub heat transferpredictionusingthe Baldwin-Loma.xmodel

does not agree with the experimental resultsbetterthan the

predictionusingChima's turbulencemodel. The predictions

using the Baldwin-Lomax model are significantlylower near

the vane suctionsurfacebeyond the throat.

Figure 11 shows the predictionfor design conditionused

by Harasagama and Wedlake(1991). There resultsshould be

compared with the data in figure4a. The effectof varying

the turbulence Model for thistest case are very similarto

the resultsshown in the previousfigureforthe data of Arts

and Heider. The vane surfaceheat transfer predictionis

somewhat improved, but theendwall heat transferprediction

agreeslesswellwith the experimental data.

There isa high degree ofsimilaritybetween the predic-

tionsforthe data ofGoldsteinand Spores,and forthe data of

Graziani et ai.(1980).The effectsof varying the turbulence

model were the same for the two configurations.Figure 12

shows the hub and rotorsurfacepredictionsforthe same case

as given infigure5. Somewhat surprisingly,substitutingthe

Baldwin-Lomax turbulencemodel has only a small effecton

the endwall heat transfer.The predictedheat transferisstill

significantlyhigherthan the data. The resultsshown infig-

ure 12 forthe vane surfaceillustratetwo independent effects.

For the suctionsurfacethe figureillustratesthe effectof a

differentturbulence model. The effectsaxe small. For the

pressuresurfacefigure12 illustratesthe effectofsuppressing

transition.A laminar calculationfor the pressuresurfaceis

ingood agreement with the experimental data.

Using the Baldwin-Lomax turbulencemodel to predicted

the high Reynolds number rotor test case of Blair(1994)is

illustratedin figure13. These resultsshould be compared

with those shown infigure7b. Here the effectof varyingthe

turbulence model isrelativelysmall. The flow distribution

de_ermined for a rotatingblade with clearance appears to
have the dominant effecton surfaceheat transfer.

Figure 14 illustrates the effect of using the Baldwin-Lomax

turbulence model for the high Reynolds number test case of

Giel el. a[. The.se predictions should be compared with the

results in figure 8a. "rhese ]leal_ transfer rates are lower than

thc__ _ calculated using Chima's turbulence model. Chima's

model givc_ heat transfer ratc,_ thai. are in better agreement
with t,he experimental data.

Fig. 9. Prediction of high Reynolds number ease of Boyle
and Russell with Baldwin-Lomax turbulence model.
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BothChima'sturbulencemodelandtheBaldwin-Lomax
modelaretwolayermodels,and have the same inner layer
formulation. The outer layer eddy viscosity is determined

differently in each model. These differences, which are de-

scribed by Chima et al.(1993), give rise to the differences

in the heat transfer predictions. Greater outer layer eddy

viscosities are associated with higher heat transfer rates. In-

creased outer layer eddy viscosities result from increased wall
distances at which the outer layer values are determined.

CONCLUDING REMARKS

Comparisons were shown between predicted and measured
blade and endwall heat transfer for data obtained from a

variety of sources. Unfortunately, one turbulence model did

not give good agreement for all cases. For all of the cases
examined the baseline model gave peak heat transfer rates

as high or higher than the measured values. Those cases for

which the wall-to-gas temperature ratio was characteristic of

actual engine conditions had predicted heat transfer rates in

good agreement with the data overall. The predictions were
only slightly higher on the endwall at the peak location in

the throat region. Overall, the model was conservative in

that it gave higher than measured heat transfer rates.

Comparisons for cases with wall-to-gas temperature ratios

not typical of actual engine operation, and low Mach num-
bers showed that the baseline turbulence model was conser-

vative, perhaps to an unacceptably high degree. An alter-

nate turbulence model gave reasonably good heat transfer

predictions for these test cases. However, this model under-

predicted the heat transfer for cases with wall-to-gas tem-

perature ratios representative of actual engine operation.

_ .Vu x 10 -+

2.$

22

Suction Pressure

Fig. 11 Prediction of high Re ca+se of llarasagama and Wed-
lake with Baldwin-Lomax turbulence model.

h,.mi,+

Fig. 12. Prediction of Grasiaai et al. with Baldwin-Lomax
turbulence model.

St x 10a
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2._ $. 2_

Fig. 13. Prediction of Blair's high Re case with Baldwin-
Lomax turbulence model.

Fig. 14 Prediction of high Reynolds number case of Giel et
al. with Baldwin-Lomax turbule,ce model.
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